Problem: Find the coefficients $\underline{a}, \underline{b}$, and $\underline{c}$ so that the graph of $f(x)=a x^{2}+b x+c$ passes through the points (1, 2), (-1, 6), and (2, 3). From Linear Algebra by Jim Hefferon

Solution: $f(1)=2, f(-1)=6$, and $f(2)=3$
So we set up a linear system.
$f(1)=a(1)^{2}+b(1)+c=2$
$f(-1)=a(-1)^{2}+b(-1)+c=6$
$f(2)=a(2)^{2}+b(2)+c=3$

So to solve this system, we set up an augmented matrix and solve it, using Gauss-Jordan elimination.


$$
R 2+-1(R 1)=\begin{array}{rrrrrrr}
\mid & 1 & 1 & 1 & \mid & 2 & \mid \\
\mid & 0 & -2 & 0 & \mid & 4 & \mid \\
\mid & 4 & 2 & 1 & \mid & 3 & \mid
\end{array}
$$

$$
\left.R 3+-4(R 1)=\begin{array}{lllllll}
\mid & 1 & 1 & 1 & \mid & 2
\end{array} \right\rvert\,
$$

$$
\left|\begin{array}{llllll}
\mid & 0 & -2 & 0 & \mid & 4
\end{array}\right|
$$

$$
\left|\begin{array}{llll}
\mid & 0 & -2 & -3 \mid
\end{array}-5\right|
$$

$$
\left.R 3+-1(R 2)=\begin{array}{|lllllll}
\mid & 1 & 1 & 1 & \mid & 2
\end{array} \right\rvert\,
$$

$$
\left.\begin{array}{|llllll}
\mid & 0 & -2 & 0 & \mid & 4
\end{array} \right\rvert\,
$$

$$
\left|\begin{array}{llll}
\mid & 0 & 0 & -3 \mid
\end{array}-9\right|
$$

$$
\left.R 1+1 / 2(R 2)=\begin{array}{rrrrrrr}
\mid & 1 & 0 & 1 & \mid & 4 & \mid \\
& \mid & 0 & -2 & 0 & \mid & 4
\end{array} \right\rvert\,
$$

$$
\begin{aligned}
R 1+1 / 3(R 3)= & \left|\begin{array}{rrrrrr}
\mid & 0 & 0 & \mid & 1 & \mid \\
& \mid & 0 & -2 & 0 & \mid \\
\mid & 0 & 0 & -3 & \mid & -9
\end{array}\right|
\end{aligned}
$$

$$
R 2 *-1 / 2(R 2)=\left|\begin{array}{lllll} 
\\
R
\end{array}\right|
$$

$$
\begin{array}{lllllll}
\mid & 0 & 1 & 0 & \mid & -2 & \mid
\end{array}
$$

$$
\left|\begin{array}{lllll}
\mid & 0 & 0 & -3 \mid & -9
\end{array}\right|
$$

$$
R 3 *-1 / 3(R 3)=\left\lvert\, \begin{array}{llllll} 
& 1 & 0 & 0 & \mid & 1
\end{array}\right.
$$

$$
\left.\begin{array}{llllll}
\mid & 0 & 1 & 0 & \mid & -2
\end{array} \right\rvert\,
$$

$$
\left\lvert\, \begin{array}{llllll}
\mid & 0 & 0 & 1 & \mid & 1
\end{array}\right.
$$

So, then $a=1, b=-2$, and $c=3$. We have found the coefficients of the quadratic equation that passes through the three points, $(1,2),(-1,6)$, and $(2,3)$.
$f(x)=1 x^{2}+-2 x+3$, or simply $f(x)=x^{2}-2 x+3$

